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This paper presents a numerical method for modeling magneto-mechanical energy harvesting devices. Our existing energy-based 

single-valued (SV) magneto-mechanical material model is utilized for the first time in a 2-D finite element formulation for an energy-

harvesting application. The SV material model yields the magnetic field strength as a function of strain and magnetic flux density. The 

proposed method can predict the voltage induced in a pickup coil due to inverse magnetostriction, when the test sample is subjected to 

dynamic loading. The results from the numerical method are experimentally verified using a prototype energy harvester. 
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I. INTRODUCTION 

HE MAGNETIC properties such as permeability of 

ferromagnetic materials change while subject to 

mechanical loading [1]. The stress dependent magnetic 

characteristics of the material can be utilized to harvest energy 

from mechanical vibrations. Utilization of ferromagnetic 

construction materials would allow energy to be harvested from 

ambient vibrational sources. Most existing energy harvesters 

utilize strong magnetostrictive materials like Terfenol-D or 

Galfenol etc. whereas the proposed energy harvesting concept 

utilizes construction steel because of its practical applications 

in bridges, buildings and rail tracks [2]-[3]. 

In this paper, a previously developed energy-based single-

valued (SV) constitutive law [4] for magneto-elastic materials 

is utilized in 2-D coupled magneto-mechanical finite element 

(FE) analysis of a magnetostrictive energy-harvesting prototype. 

Similar energy-based models have been presented in [5] and [6].  

The goal is to show that this numerical approach can be used to 

analyze and design magnetostrictive energy harvesting devices. 

II. EXPERIMENTAL SETUP 

The experimental setup and FE mesh are shown in Fig. 1. A 

test sample made up of solid construction steel is utilized. The 

sample dimensions are 20x20x100 mm. The sample is 

magnetized with a U-shaped core and two magnetizing coils, 

and it can be vertically stressed with a hydraulic press. The 

magnetic field is parallel to the stress in the middle part of the 

sample. 

The measurement setup was first used with static stress and 

AC magnetization in order to measure the magnetization curves 

of the sample under static stress, which are needed for the 

identification of the SV model. The results of the measurement 

were compared with the no stress B-H curve to analyze the 

behavior of the magnetization curve under static stress. 

Secondly, the setup was used for validating the FE model 

under dynamic stress and DC magnetization. In this case, the 

test sample was subjected a sinsusoidal cyclic loading of 11 Hz 

from zero to 25 MPa tension. The voltage induced to the pickup 

coil by the flux density variation due to inverse 

magnetostriction was measured using an oscilloscope. A low 

pass filter with the cutoff frequency of 80 Hz was utilized to 

remove the high frequency noise form the measured signal. The 

measured results were compared with the simulated results to 

validate the proposed numerical method. 

 

 
Fig. 1. Experimental setup and FE mesh of the energy harvester. 

III. NUMERICAL MODEL 

In the numerical analysis the coupled magneto-mechanical 

model described in [4] is used. In this model the constitutive 

equations for the magnetic field strength H and stress σ are 

derived by using the Coleman-Noll procedure from the specific 

Helmholtz free energy density ψ as 
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where ρ is the mass density. Dependency of the free energy 

from the state variables, i.e. the magnetic flux density vector B 

and strain tensor ε is established using the invariants I1 = tr ε, I2 

= (tr ε)2,  I4 = ||B||2, I5 = tr(eB  B), and I6 = tr(eB  eB), where  
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is the deviatoric strain, I the identity tensor and ⊗ denotes the 

tensor product. The cubic invariant J3 = det e is not used since 

in the absence of magnetic excitation the linear stress-strain 

relation should be recovered.  

The free energy density ψ is expressed as 
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where λ and μ are the Lamé parameters calculated from the 

Young’s modulus E = 200 GPa and Poisson’s ratio ν = 0.34, and 

yielding the Hooke’s law. The polyonomial coefficients αi, βi 

and γi are fitted so that the B-H curves predicted by (1) 

correspond to the ones measured at static stress and AC 

magnetization. Fig. 2 shows both measured and predicted 

magnetization curves. 

 
 

Fig. 2. Measured B-H curves and fitted SV model. 

 

The 2-D finite element model is implemented in MATLAB 

using linear triangular elements and a magnetic vector potential 

A = Auz, such that B = ×A. Fig. 1 presents the FE mesh used 

for the computation. The model solves Ampere’s law 

  , H B ε 0 , (3) 

using the SV model for the calculation of H(B, ε). The eddy-

currents in the laminated U-core and test sample are neglected.

 The time-stepping is performed with the implicit Euler 

method and the nonlinearity is handled with the Newton-

Raphson method. A sinusoidally varying uniaxial stress is 

introduced in the sample and the strain ε is calculated from the 

stress using generalized Hooke’s law. The SV model is used to 

calculate H from known B and 𝜺 at each integration point in 

elements located in test sample at each time step. The induced 

voltage in pickup coil is calculated from the average flux 

density inside test sample at the vertical location of the pickup 

coil using Faraday’s law. 

IV. RESULTS AND DISCUSSION 

The maximum root mean squared induced voltage was 

recorded 7.8 mV when the test sample was subjected to cyclic 

loading of zero to 25 MPa tension, whereas, an induced voltage 

of 8.2 mV was calculated by utilizing the proposed model. The 

maximum voltage is obtained at a magnetization current of 0.4 

A, which corresponds to field-strength and flux-density values 

of about 2000 A/m and 0.9 T, respectively, in Fig. 2. The results 

at different magnetization currents are shown in Fig. 3 where 

the induced voltage tends to zero when the material reaches 

saturation. At higher field strengths the fitting error increases 

and the simulated voltage decreases faster than the measured 

one. Precise fitting of the SV model parameters is crucial in 

order to obtain the accurate results, since the induced voltage is 

determined by the difference of the B-H curves at different 

stresses. In the experimental setup, small air gaps are present 

between the U-core and test sample. These air gaps are difficult 

to determine which also affects the simulated results. In 

addition, the eddy-currents in the solid bar cannot be properly 

accounted for by the 2-D model. 

 
 

Fig. 3. Induced voltage in the pickup coil. 
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